Architecture of protein and DNA contacts within the TFIIIB-DNA complex.
نویسندگان
چکیده
The RNA polymerase III factor TFIIIB forms a stable complex with DNA and can promote multiple rounds of initiation by polymerase. TFIIIB is composed of three subunits, the TATA binding protein (TBP), TFIIB-related factor (BRF), and B". Chemical footprinting, as well as mutagenesis of TBP, BRF, and promoter DNA, was used to probe the architecture of TFIIIB subunits bound to DNA. BRF bound to TBP-DNA through the nonconserved C-terminal region and required 15 bp downstream of the TATA box and as little as 1 bp upstream of the TATA box for stable complex formation. In contrast, formation of complete TFIIIB complexes required 15 bp both upstream and downstream of the TATA box. Hydroxyl radical footprinting of TFIIIB complexes and modeling the results to the TBP-DNA structure suggest that BRF and B" surround TBP on both faces of the TBP-DNA complex and provide an explanation for the exceptional stability of this complex. Competition for binding to TBP by BRF and either TFIIB or TFIIA suggests that BRF binds on the opposite face of the TBP-DNA complex from TFIIB and that the binding sites for TFIIA and BRF overlap. The positions of TBP mutations which are defective in binding BRF suggest that BRF binds to the top and N-terminal leg of TBP. One mutation on the N-terminal leg of TBP specifically affects the binding of the B" subunit.
منابع مشابه
The symmetry of the yeast U6 RNA gene's TATA box and the orientation of the TATA-binding protein in yeast TFIIIB.
The central RNA polymerase III (Pol III) transcription factor TFIIIB is composed of the TATA-binding protein (TBP), Brf, a protein related to TFIIB, and the product of the newly cloned TFC5 gene. TFIIIB assembles autonomously on the upstream promoter of the yeast U6 snRNA (SNR6) gene in vitro, through the interaction of its TBP subunit with a consensus TATA box located at base pair -30. As both...
متن کاملMapping the contacts of yeast TFIIIB and RNA polymerase III at various distances from the major groove of DNA by DNA photoaffinity labeling.
The structure of the Saccharomyces cerevisiae RNA polymerase III transcription complex on the SUP4 tRNATyr gene was probed at distances of approximately 10 to approximately 23 A from the C-5 methyl of thymidine in the major groove of DNA using photoreactive aryl azides attached to deoxyuridine by variable chain lengths. The nucleotide analogs contained an azidobenzoyl group attached with chain ...
متن کاملDifferent human TFIIIB activities direct RNA polymerase III transcription from TATA-containing and TATA-less promoters.
Transcription initiation at RNA polymerase III promoters requires transcription factor IIIB (TFIIIB), an activity that binds to RNA polymerase III promoters, generally through protein-protein contacts with DNA binding factors, and directly recruits RNA polymerase III. Saccharomyces cerevisiae TFIIIB is a complex of three subunits, TBP, the TFIIB-related factor BRF, and the more loosely associat...
متن کاملKinetic trapping of DNA by transcription factor IIIB.
High levels of RNA polymerase III gene transcription are achieved by facilitated recycling of the polymerase on transcription factor IIIB (TFIIIB)-DNA complexes that are stable through multiple rounds of initiation. TFIIIB-DNA complexes in yeast comprise the TATA-binding protein (TBP), the TFIIB-related factor TFIIIB70, and TFIIIB90. The high stability of the TFIIIB-DNA complex is conferred by ...
متن کاملINTERACTION OF DOXORUBICIN WITH DNA-HMG1 COMPLEX
In this study, the interaction of the anthracycline antibiotic doxorubicin with DNA-HMG 1 complex was investigated employing UV/VIS spectroscopy, thermal denaturation and DNA cellulose chromatography techniques. The results indicated that the binding of doxorubicin to the protein reduces its Tm in a dose dependent manner. Although doxorubicin protects free DNA against thermal denaturation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 18 3 شماره
صفحات -
تاریخ انتشار 1998